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Semi-supervised Learning for Mars Imagery Classification

and Segmentation

WENJING WANG, LILANG LIN, ZEJIA FAN, and JIAYING LIU, Wangxuan Institute of Computer

Technology, Peking University, China

With the progress of Mars exploration, numerous Mars image data are being collected and need to be ana-

lyzed. However, due to the severe train-test gap and quality distortion of Martian data, the performance of

existing computer vision models is unsatisfactory. In this article, we introduce a semi-supervised framework

for machine vision on Mars and try to resolve two specific tasks: classification and segmentation. Contrastive

learning is a powerful representation learning technique. However, there is too much information overlap

between Martian data samples, leading to a contradiction between contrastive learning and Martian data.

Our key idea is to reconcile this contradiction with the help of annotations and further take advantage of

unlabeled data to improve performance. For classification, we propose to ignore inner-class pairs on labeled

data as well as neglect negative pairs on unlabeled data, forming supervised inter-class contrastive learning

and unsupervised similarity learning. For segmentation, we extend supervised inter-class contrastive

learning into an element-wise mode and use online pseudo labels for supervision on unlabeled areas.

Experimental results show that our learning strategies can improve the classification and segmentation

models by a large margin and outperform state-of-the-art approaches.
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1 INTRODUCTION

Humanity’s interest in the universe is prevalent and enduring. In recent years, machine learn-
ing has shown its great power in space exploration. For example, the first black hole image was
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captured by combining data from eight telescopes using a machine learning algorithm [4]. As tech-
niques develop, machine learning will play a more and more significant role in scientific fields.

Humans have been exploring the planet Mars since the last century. Multiple rovers have been
dispatched to Mars, sending an enormous amount of images to Earth. With these massive images,
data-driven learning is increasingly being used in Mars research. Wagstaff et al. [48] proposed to
automatically classify images from the Mars Science Laboratory (MSL) mission with a neural
network. Targeting rover self-driving, Swan et al. [45] explored the task of Mars terrain segmen-
tation. However, these works simply applied conventional machine learning algorithms designed
for Earth object classification or street scene segmentation. They neglect the properties of Mars
data and leave the features of extraterrestrial planet surfaces unexplored.

Mars data provides specific difficulties for machine learning methods. First, along with explo-
ration progress, the rover moves to a new area and collects new data, which can cause a severe
train-test gap. Second, the quality of Martian data suffers in many ways, such as bad weather con-
ditions, camera equipment damage, and signal loss in Mars-to-Earth transmission, which gives rise
to limited information quality. Detailed analysis and visualization will be given in Section 3.

Many methods have been proposed to narrow train-test gaps. Some works revise loss de-
signs [30, 40, 50], some focus on imbalanced data distribution [5, 12, 25, 57], and some propose
specific training strategies [43, 53, 54]. Although these approaches are powerful for common vi-
sion tasks, the train-test gap on Mars rover data is too challenging as we will show in Section 3,
making existing methods ineffective.

Data quality improvement is a popular topic. For image quality, researchers have studied meth-
ods to deal with various kinds of distortion, including but not limited to super-resolution [16, 23],
de-noising [13, 52], and illumination enhancement [24]. However, Mars rover images suffer from
compound distortions, which are too complex for existing restoration methods to handle. For data
diversity, image augmentation [53, 54] is not powerful enough, while adversarial-learning-based
image generation [18] is not reliable. For annotation quality, researchers have explored how to
train with noisy labels [32] or synthesize more labels [29], but these approaches are not effective
enough on Mars rover data as we will show in Section 6.

Unlike existing methods, we solve the problem through representation learning. With a robust
visual representation, the train-test gap and low data quality can be resolved simultaneously. Based
on this methodology, we study two Martian vision tasks: image classification and semantic segmen-
tation. The former is about image-level prediction, while the latter is about per-pixel prediction.
Classification and segmentation are very representative tasks. Our exploration of them can also
provide insights for other Martian vision tasks, such as object detection, tracking, and locating.

We adopt a widely used representation learning approach: contrastive learning [10, 21]. Con-
trastive learning increases the mutual information between positive pairs and decreases the
similarity between negative pairs. It can improve the separability and compactness of features,
providing a more suitable representation space for various downstream vision tasks. However, di-
rectly applying it to Mars rover data results in poor performance. This is because there is a severe
information overlap between different Mars data samples, which negates the effect of contrastive
learning.

To resolve this contradiction, we propose a semi-supervised learning strategy. On the one hand,
we make use of annotations and ignore pairs within the same class, forming supervised inter-
class contrastive learning. On the other hand, we train models on unlabeled images or areas to
introduce more supervision. The difference between conventional contrastive learning and our
learning paradigm is illustrated in Figure 1. More specifically, for Mars image classification, we
abandon negative pairs and carry out unsupervised similarity learning on unlabeled images. For
segmentation, we further revise contrastive learning into a pixel-wise mode with online pseudo
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Fig. 1. The proposed semi-supervised learning paradigm for Martian machine vision tasks. Left: The frame-

work of conventional contrastive learning. Due to the redundancy in Mars data, naive pairs can be inap-

propriate. Right: Our semi-supervised framework. On labeled data, we generate inner-class positive pairs

and inter-class negative pairs. On unlabeled data, we use similarity learning and online pseudo labels to

introduce more supervision.

labels on unlabeled areas. Experimental results demonstrate that our method achieves superior
performance for Mars rover imagery classification and segmentation.

Our contributions can be summarized as follows:

• Targeting at Martian machine vision tasks, we propose a semi-supervised learning frame-
work, which outperforms existing approaches by a large margin in terms of classification
and segmentation.
• For Mars imagery classification, we propose supervised inter-class contrastive learning and

unsupervised similarity learning. By abandoning inter-class pairs on labeled data as well as
negative pairs on unlabeled data, we resolve the contradiction between Mars rover images
and contrastive learning.
• For Mars imagery segmentation, we extend inter-class contrastive learning into an element-

wise mode and introduce online pseudo labels on the unlabeled area. Our method not only
suits per-pixel prediction tasks but also makes use of the unlabeled area for further supervi-
sion, improving the performance of segmentation.

The rest of the article is organized as follows. Section 2 provides a detailed review of the relevant
literature. Section 3 presents an in-depth analysis of Mars rover data. Sections 4 and 5 introduce
the proposed semi-supervised frameworks for classification and segmentation, respectively. Ex-
perimental results and analyses are in Sections 6 and 7. Concluding remarks are finally given in
Section 8.

2 RELATED WORKS

2.1 Machine Learning in Mars Exploration

Machine learning has been utilized for a variety of planetary science tasks, such as exoplanet
detection [41], comparative planetology, and exoplanet biosignatures [49]. Readers may refer to
[2] for a more comprehensive review and outlook.

For Mars exploration, existing machine learning applications can be categorized into two cate-
gories: in situ (Mars edge) and ex situ (Earth edge) [33]. For in situ methods, machine learning can
benefit autonomous decision-making and save bandwidth by filtering out undesired images. The
Opportunistic Rover Science (OASIS) framework uses machine learning algorithms to iden-
tify terrain features [8, 20], dust devils, and clouds [7]. For rover navigation, Abcouwer et al. [1]
presented two heuristics to rank candidate paths, where a machine learning model is applied to
predict untraversable areas. For ex situ methods, machine learning can help scientists analyze data
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and notify noteworthy findings. JPL scientists [17] built an impact crater classifier to analyze im-
ages captured by the Martian Reconnaissance Orbiter. Dundar et al. [19] applied machine learning
algorithms to discover less common minerals and search for aqueous mineral residue. Rothrock
et al. [38] designed machine learning models to identify terrain types and features in orbital and
ground-based images. The analysis can alert areas of slippage for rovers and assist the determi-
nation of potential landing sites for new missions. Wagstaff et al. [48] created a dataset of the
Mars surface environment and trained AlexNet [28] for content classification. Swan et al. [45] col-
lected a terrain segmentation dataset of 35K high-resolution images and tested the performance of
DeepLabv3+ [9]. To find an efficient energy distribution between different systems in the orbiter,
Petkovic et al. [36] applied multi-target regression to estimate the power consumption of the ther-
mal system. For geomorphic mapping, Wilhelm [51] built a dataset and provided an automated
landform analysis strategy.

However, most of the aforementioned algorithms are non-deep, taking no advantage of power-
ful neural networks. Some research builds neural networks but directly applies models designed
for conventional computer vision tasks [45, 48], thus having unsatisfactory performance. More-
over, advanced learning strategies such as semi-supervised and weakly supervised learning in the
Martian scenario remains unexplored. The “weak supervision” in [51] refers to window sliding
with Markov Random field smoothing for creating maps, which is far different from learning rep-
resentation with limited data. In this article, we present an in-depth analysis of images captured
by Mars rovers and introduce a more powerful semi-supervised framework, which expands the
research of deep learning for Mars.

2.2 Improving Classification and Segmentation Performance

Classification and segmentation are some of the most basic and popular tasks in computer vision.
There have been many techniques for improving their performance.

Several works propose loss designs to balance positive and negative samples. Triplet loss [40]
minimizes the distance between positive pairs and maximizes the distance between negative pairs.
Center loss [50] clusters the feature representation. Focal loss [30] aims at the imbalance between
positive and negative samples. Classification problems often suffer from data imbalance across
classes. To solve data imbalance, re-sampling- and re-weighting-based methods [5, 12, 25] are pro-
posed. In work [25], researchers decouple the learning procedure into representation learning and
classification, then apply class-balanced sampling for classifier retraining. CB loss [12] represents
the additional benefit with a hyper-parameter related to the sample volume and re-weighting the
samples based on the additional benefit. LDAM [5] aims to minimize the margin-based generaliza-
tion bound along with the prior re-weighting or re-sampling strategy. CutOut [15], CutMix [53],
and ClassMix [34] are powerful data augmentation mechanisms.

CutOut [15] randomly masks out regions, removing contiguous sections of images. The limita-
tion is that CutOut only captures relationships within the samples. To introduce information across
samples, CutMix [53] combines different parts of two images to generate a new image. However,
the random combination may destroy the semantic structure of the original image. Thus, Class-
Mix [34] combines semantic classes extracted from different images to make the generated image
more meaningful. ReCo [31] is a contrastive learning framework designed at a regional level to
assist learning in semantic segmentation. It is computationally expensive to carry out pixel-level
contrastive learning for all available pixels in high-resolution training. To reduce memory require-
ments, ReCo introduces an active hard sampling strategy to optimize only a few queries and keys.

However, all these methods have limited effectiveness on Mars rover data as we will demonstrate
in Sections 6 and 7. In this article, we propose a more effective representation learning strategy
and achieve superior performance.
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Fig. 2. The uneven category distribution of train/validation and test sets in Mars rover data. (a) MSL surface

dataset [48]. (b) AI4Mars dataset [45].

3 MARS IMAGERY DATASETS

In this article, we experiment with our semi-supervised framework for on two specific Martian
vision tasks: image classification and segmentation.

As for classification, we apply the MSL surface dataset [48]. Wagstaff et al. collected 6,691 images
by three instruments of the Curiosity Rover. The Mars rover mission scientist defined 24 categories
for the dataset. Training and evaluation are split by Mars solar day (sol). Data on sol 3–564 is for
training and validation, while sol 565–1060 is for testing. Different from [48], we reshuffle the
training and validation sets to narrow the train-val gap, which can improve the top-1 accuracy by
about 2%. Our testing set remains the same [48].

As for segmentation, we apply the AI4Mars dataset [45], a large-scale Mars dataset for terrain
classification and segmentation. This dataset consists of 35K images from Curiosity, Opportunity,
and Spirit Rovers, collected through crowdsourcing. Each label references the views of approxi-
mately 10 people to ensure the annotation quality. Considering that the images obtained during
the actual Mars exploration must be associated with the rovers’ progress, we reasonably rearrange
the dataset in the chronological order taken, just as the setting followed by the classification dataset.
In ascending order of the shooting date, images in the training and validation sets account for the
first 60% of the dataset, i.e., sol 1–1,486, then the test data for the last 40%, i.e., sol 1,487–2,579.

Generally, Mars rover data poses two challenges for machine learning:

• Train-Test Gap. In actual missions, the training and validation processes can only use data
collected in the past, while future data is the testing target. However, since rovers capture im-
ages at a non-uniform frequency and keep traveling to new areas, the collected data varies
over time. This feature leads to a large train-test gap for class distribution and object ap-
pearance. As shown in Figure 2(a) and Table 1, the classification dataset suffers from un-
balanced class distribution. The samples of drt side class are largely absent from the train-
ing set, though appear frequently in the testing set. On the contrary, classes like turrent,
scoop, and drill holes have abundant samples in the training set but scarcely appear in the
testing set. The same thing happens on the segmentation dataset. As in Figure 2(b) and Ta-
ble 2, while the proportion of the sand class increases markedly, the proportion of the soil

class decreases. The gap lies in not only class distribution but also object appearance as
shown in Figure 3, e.g., the samples of drt side class in the training set were shot from a
distance, while those in the testing set were shot up close. The case for the inlet class is the
opposite.
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Fig. 3. The various appearances of the same objects in the MSL surface dataset [48].

Table 1. The Number of Samples for Each Category in MSL Surface Dataset [48]

Train/Val Test

apxs 46 34
apxs cal target 10 14
chemcam cal target 15 21
chemin inlet open 92 84
drill 39 20
drill holes 506 0
drt front 6 60
drt side 12 150
ground 2,430 254
horizon 299 72
inlet 261 16
mahli 14 12

Train/Val Test

mahli cal target 60 57
mastcam 36 32
mastcam cal target 105 48
observation tray 99 12
portion box 38 48
portion tube 128 9
portion tube opening 20 2
rems uv sensor 32 36
rover rear deck 57 14
scoop 190 10
turret 193 0
wheel 698 300

Table 2. The Total Area for Each Category in AI4Mars Dataset [45]

soil bedrock sand big rock

Train/Val 2.59 × 109 2.59 × 109 5.68 × 108 6.35 × 107

Test 9.57 × 108 2.10 × 109 5.89 × 108 2.28 × 107

• Limited Information Quality. The quality of Martian data suffers in many ways. First,
rover data may be affected by wrong shooting operations, camera equipment damage, and
signal loss in Mars-to-Earth transmission. These errors can degrade the visual quality of
images, as shown in Figure 4. Second, because of the monotonous Mars scenes and limited
data sources, Mars datasets are usually less diverse than common computer vision datasets.
Third, annotating Mars data requires particular expert knowledge. High labeling costs and
limited budgets hamper the acquisition of high-quality annotation. Accordingly, the label
quality of Mars rover data can be unsatisfactory, as shown in Figure 5.

4 SEMI-SUPERVISED MARS IMAGERY CLASSIFICATION

We first introduce our solution for the Mars imagery classification task. To make full use of
annotations and unlabeled images, we design a semi-supervised contrastive learning scheme, con-
sisting of two sub-strategies: supervised inter-class contrastive learning and unsupervised simi-
larity learning. In the following, we first review contrastive learning, then introduce our specific
method.
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Fig. 4. Examples of low-quality images in the MSL surface dataset [48].

Fig. 5. Some annotations are of low quality in the AI4Mars dataset [45]. On the left, as indicated by white

arrows, rocks are labeled as sand (the first column), while a patch of sand is labeled as bedrock (the second

column). On the right, similar terrains are labeled inconsistently on different samples.

4.1 Review of Contrastive Learning

As stated in [10], the core of contrastive learning is to increase the mutual information between
pairs of positive samples and decrease the similarity between pairs of negative samples. To gener-
ate positive and negative samples, data transformation is widely utilized. Specifically, for a sample
xi from the dataset X, contrastive learning performs random data transformationT to obtain trans-
formed data x1

i = T 1 (xi ), x2
i = T 2 (xi ), where x1

i � x2
i are two different views of xi , and T 1, T 2

are transformations sampled from T independently. With T , contrastive learning assigns positive
pairs as views of the same image and negative pairs as views of different images. Then, a feature
encoder f is used to extract the representation of x1

i and x2
i , denoted as z1

i = f (x1
i ), z2

i = f (x2
i ).

Finally, contrastive learning normalizes the features into a spherical manifold and computes the
cosine similarity between positive pairs and negative pairs. The InfoNCE loss [47] is applied for
optimization:

L = −Exi

⎡⎢⎢⎢⎢⎢⎣log
exp
(
K
(
z1

i , z
2
i

)
/τ
)

∑
xj ∈X exp

(
K
(
z1

i , z
2
j

)
/τ
)
⎤⎥⎥⎥⎥⎥⎦ , (1)

K (u, v) = uTv/||u|| ||v||,

where τ is a temperature hyper-parameter, and K (·, ·) is the kernel function for computing cosine
similarity.

Although contrastive learning is originally designed for unsupervised learning, it can also assist
supervised learning. Compared with a solo classification loss, training with an extra contrastive
loss can enrich the visual representation, improving the robustness of the neural network.
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4.2 Supervised Inter-class Contrastive Learning

Current research mostly applies contrastive learning on large-scale Earth image datasets such as
ImageNet [14] and JFT [44], where the difference between images is large enough. However, com-
pared with diverse Earth scenes, Mars scenes are rather homogeneous. Moreover, Mars rovers may
take photos at the same scene multiple times, e.g., when investigating the surrounding terrain or
monitoring equipment degradation. These factors result in a severe information overlap between
different Mars image samples. Since contrastive learning relies on the mutual information between
different samples, cross-image information overlap may lead to the futility of contrastive learning
on Mars data.

To address this problem, we make use of classification annotations to select more appropriate
contrastive pairs. Specifically, we delete negative samples belonging to the same class and add
positive pairs of different samples belonging to the same class; i.e., we increase the mutual infor-
mation of all samples in the same category and decrease the similarity only for pairs of different
categories. In other words, we turn the original unsupervised sample-wise contrastive learning
strategy into a supervised inter-class version.

Denoting the number of categories as C , our supervised inter-class contrastive loss is

Ls
cls = −Exci

⎡⎢⎢⎢⎢⎢⎣log
exp
(
K
(
z1

ci
, z′2ci

)
/τ
)

∑C
c j=1 exp

(
K
(
z1

ci
, z2

c j

)
/τ
)
⎤⎥⎥⎥⎥⎥⎦ , (2)

where z1
ci
= f (T 1 (xci

)) and z′2ci
= f (T 2 (x′ci

)). xci
and x′ci

are samples belonging to category ci .
The selection of data augmentation T is one of the keys in contrastive learning. The augmenta-

tion we use can be categorized into two types: shape and pixel. Shape augmentation teaches the
model to perceive objects under different camera angles and magnifications. It contains random
flipping, cropping, resizing, and rotation. Pixel augmentation aims to improve the model’s robust-
ness to image quality degradations. It contains Gaussian blur, color jittering, and desaturation.
With revised contrastive learning and targeted augmentation, the problems of data imbalance and
low image quality can be greatly alleviated.

4.3 Unsupervised Similarity Learning

Our supervised inter-class contrastive loss relies on sufficient annotations. However, labeling data
requires a lot of manpower and financial resources. For Mars data, the cost is particularly high.
Identifying Martian landscapes and rover components requires expert knowledge [48]. Although
annotations are expensive, pure images are relatively easy to obtain. Through past and current
missions, scientists have acquired millions of images from Mars. To reduce the reliance on anno-
tations, we explore how to use unlabeled data to further improve classification performance.

Unlabeled Mars data also has information overlap between different samples. When applying
contrastive learning to these data, negative pairs may come from the same scene and should not
be forced apart in the feature space. The only thing guaranteed is that different views of the same
image should have similar representations. Therefore, we adopt similarity learning, where we aban-
don negative pairs and only consider positive ones. Denoting xu as a sample from unlabeled data,
the proposed unsupervised similarity loss is

Lu
cls = −Exu

[
K
(
z1

u , z
2
u

)]
. (3)

Why similarity learning does not lead to model collapse is an interesting question. In experi-
ments, we find that training classification with Lu

cls
does cause collapse. However, when we add

Ls
cls

, model collapse is prevented. This may be because supervised inter-class contrastive learn-
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Fig. 6. The framework of our semi-supervised Mars image classification. There are three streams in the frame-

work: (top to bottom) classification, supervised inter-class contrastive learning, and unsupervised similarity

learning. Each stream shares the backbone and has independent heads.

ing provides a good restriction to the feature representation, counteracting the bad impacts of
similarity learning.

4.4 Full Model

As shown in Figure 6, our framework consists of three streams: classification, supervised inter-
class contrastive learning, and unsupervised similarity learning. Since we combine supervised and
unsupervised learning, our approach is “semi-supervised.”

The classification objective Lce
cls

is cross entropy. Given a labeled sample xci
∈ X of category ci ,

Lce
cls

is

Lce
cls = −Exci

⎡⎢⎢⎢⎢⎣log
exp(zci ,ci

)
∑C

c j=1 exp(zci ,c j
)

⎤⎥⎥⎥⎥⎦ , (4)

where zci ,c j
is the c j th element of zci

, representing the prediction of the sample belonging to the
c j category.

Our full loss function is

Lcls = Lce
cls + λ

s
clsL

s
cls + λ

u
clsL

u
cls , (5)

where λs
cls

= 1 and λu
cls

= 0.2 are hyper-parameters to balance different training objectives. The
temperature hyper-parameter τ in Ls

cls
is set to 0.2.

We use ResNet-50 [22] for classification. In Ls
cls

and Lu
cls

, the feature encoder f consists of a
shared ResNet-50 backbone B and a two-layer Multi-Layer Perceptron (MLP) head. We denote
the MLP in Ls

cls
and Lu

cls
as H s

cls
and Hu

cls
, respectively. The output dimension of H s

cls
and Hu

cls
is

128.

5 SEMI-SUPERVISED MARS IMAGERY SEGMENTATION

In this section, we extend our semi-supervised contrastive learning scheme from Mars imagery
classification to semantic segmentation. The challenge is that classification is an image-wise pre-
diction task, while segmentation is pixel-wise. In segmentation, each pixel has its own category,
which requires the model to perceive objects at a finer scale. However, conventional contrastive
learning methods treat the input image as a whole. To address this problem, we propose element-
wise contrastive learning.

5.1 Element-wise Inter-class Contrastive Learning

Given an input image xseд , we first use a feature encoderд to extract the representation f = д(xseд ).
In classification, the extracted representation is a vector, while in segmentation, what we obtain

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 4, Article 144. Publication date: March 2023.



144:10 W. Wang et al.

is a 2D feature map. The resolution of f is usually lower than that of the input image xseд . Then,
we down-sample the segmentation annotation of xseд to match the resolution of f . In this way,
each spatial element in f can have its own category, which supports us to conduct element-wise
inter-class contrastive learning.

Similar to our approach for classification, we want to make features of the same category closer
and features of different categories more separable. Denoting fi as an element in the 2D feature
map f and its category as ci , we can have a naïve form of element-wise inter-class contrastive
learning:

L̃s
seд = −Exseд

Efi

[
log

∑
c j=ci

exp(K (fi , fj )/τ )
∑

j exp(K (fi , fj )/τ )

]
. (6)

For pixels without labels, we simply ignore them.

The problem is that L̃s
seд is impossible to calculate. If the resolution of f is 128 × 128, there will

be 16,384 elements in f . Computing the similarity among 16,384 vectors, i.e., 268 million vector

multiplications, exceeds the capacity of current computation devices. Moreover, L̃s
seд only consid-

ers elements in a single image. To make training feasible and introduce cross-image contrastive
pairs, we use a memory bank to store the history average representation for each category.

The proposed memory bank M = {mci
}Cci=1 consists of C queues, where C is the number of

categories. Each queue mci
constantly removes the oldest element and stores the average of all

features labeled ci in the current f . Denoting mci
as the average of mci

, our element-wise inter-
class contrastive learning loss is

Ls
seд = −Exseд

Efi

⎡⎢⎢⎢⎢⎣log
exp(K (fi ,mci

)/τ )
∑C

c j=1 exp(K (fi ,mc j
)/τ )

⎤⎥⎥⎥⎥⎦ . (7)

With an assistant memory bank, Ls
seд reduces the computation complexity and introduces cross-

image information by storing previous features.

5.2 Online Pseudo Labeling for Semi-supervised Learning

Annotating segmentation is laborious and time-consuming. Accordingly, 44.83% of the area does
not have labels in the AI4Mars dataset, which limits the effect of our supervised inter-class con-
trastive learning. Moreover, as we stated in Section 3, the quality of annotation in AI4Mars is not
satisfactory. To exploit numerous unlabeled pixels and refine annotation, we expand supervision
from labeled areas to more areas by semi-supervised learning.

To construct positive and negative pairs on unlabeled data, previous methods apply cluster-
ing [6] or data transformation [21]. However, these strategies rely on sufficient and diverse data,
which are not suitable for Mars scenarios. We instead use a fairly good segmentation model and
predict pseudo labels on unlabeled data. With the help of segmentation prediction, we can con-
struct more accurate contrastive pairs.

We first train a segmentation network on fully supervised data. Then, we use it to predict a
category for each unlabeled pixel. To ensure the quality of pseudo labels, we remove predictions
with low confidence. The confidence threshold is set to 0.9. Then, pseudo labels are added to join
our Element-wise Inter-class Contrastive Learning. Formally, for an input image xseд with ground-
truth annotation y and segmentation prediction ŷ, we supplement the unlabeled part in y with
the high-confidence part in ŷ. The merged result is denoted as y. For fully supervised learning,
Ls

seд refers y for the category of each pixel, while in semi-supervised learning, we replace y with

y. In this way, we introduce unlabeled data into training. Semi-supervision can introduce more
guidance to the network, making the feature space easier to generalize.
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Fig. 7. The framework of our semi-supervised Mars image segmentation. There are two streams: (top to bot-

tom) segmentation and element-wise inter-class contrastive learning. The two streams share the backbone

and have independent heads.

5.3 Full Model

Similar to classification, the segmentation objective Lce
seд is also cross entropy:

Lce
seд = −Exseд

Efi

⎡⎢⎢⎢⎢⎣log
exp(fi,ci

)
∑C

c j=1 exp(fi,c j
)

⎤⎥⎥⎥⎥⎦ , (8)

where fi,c j
represents the prediction of this pixel belonging to the c j category, and ci is the ground-

truth label.
To make training stable and maximize the effectiveness of each learning design, we adopt a three-

step training strategy: supervised contrastive learning pretraining, segmentation fine-tuning, and
semi-supervised joint training.

We first pretrain the model with supervised contrastive learning alone, which provides a suit-
able feature space initialization for segmentation. We apply Element-wise Inter-class Contrastive

Learning with ground-truth annotations.
After pretraining, the model is trained with contrastive and segmentation losses simultaneously.

The training objective is

Lseд = Lce
seд + λ

s
seдLs

seд , (9)

where λs
seд controls the training balance between two objectives. To reduce the impact of con-

trastive learning, λs
seд is set to 0.001. The hyper-parameter τ in Ls

seд is set to 0.07.
Finally, the model is trained with semi-supervised learning. We add Online Pseudo Labeling

to element-wise inter-class contrastive learning. The previous training steps ensure the accu-
racy of segmentation, providing good initial pseudo labels for this step. With the training of the
framework, we get better and better label estimates for unlabeled data, which promotes the semi-
supervised learning process and enables the model to extract more separable feature representa-
tions.

The framework is shown in Figure 7. Our model is based on DeepLabv3+ [9]. The segmentation
and contrastive streams share a same ResNet-101 [22] backbone Bseд . The heads in these two
streams, Hseд and H s

seд , are all DeepLabv3+ segmentation heads. The output dimension of H s
seд is

128. The queue length in the memory bank M is 32.

6 EXPERIMENTS FOR MARS IMAGERY CLASSIFICATION

In this section, we evaluate our semi-supervised learning framework for classification. We first
introduce the experimental settings, then show the comparison results against the state of the art,
and finally provide ablation studies and more performance analysis.
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Table 3. Results for MSL Rover Image Classification

Category Method Top-1 (%)

2*Baseline AlexNet [28] in [48] 66.70
ResNet-50 [22] 79.28 ± 1.76

Focal loss [30] 82.86 ± 0.74
Loss design Center loss [50] 82.91 ± 0.93

Triplet loss [40] 84.87 ± 1.13

2*Training MixUp [54] 76.19 ± 1.65
2*design CutMix [53] 80.61 ± 1.51

Dropout [43] 83.37 ± 0.41

S4L [3], rotation 75.19 ± 1.73
Semi- SupCon [26] + Linear Classifier 77.11 ± 2.89
supervised Pseudo labeling [29] 78.64 ± 0.04
learning S4L [3], jigsaw 81.81 ± 2.33

SupCon [26] + All Layers 83.22 ± 1.33
SsCL [55] 90.81 ± 1.85

2*Re-sampling Decoupling [25], cRT 80.94 ± 1.43
Decoupling [25], LWS 81.30 ± 0.62

2*Re-weighting Class-balanced loss [12] 80.02 ± 0.89
LDAM-DRW [5] 82.12 ± 1.92

Ours 95.86 ± 1.63

6.1 Experiment Setup

For model training and evaluation, we use the MSL surface dataset [48]. For unsupervised similar-
ity learning, we additionally collect 34K unlabeled color images from the NASA’s Planetary Data

System (PDS).1

We first pretrain the model on ImageNet [14] following MoCo V2 [11]. Then, the model is fine-
tuned on Mars data with Adam [27] optimizer for 30 epochs. The mini-batch size is set to 16 forLce

cls
and Lu

cls
and to 24 for Ls

cls
. Here, 24 equals the number of categories in the MSL surface dataset.

The initial learning rate is set to 1e-3 for Hcls and 1e-6 for Bcls , H s
cls

, and Hu
cls

, then multiplied by
0.1 at 20 and 25 epochs. The fine-tuning process takes about 1 hour with an Nvidia GeForce RTX
2080Ti.

6.2 Comparison Results

We compare the performance of our model with the other 10 related methods. For reliability, we
run each experiment three times, then show the mean and standard deviation in Table 3.

We first carry out a comparison with work [48], in which the model performance is 66.70%. The
low performance may be due to the limited capability of AlexNet [28]. The performance improves
to 79.28% after we change the baseline to ResNet-50 [22], demonstrating the necessity of using
good feature extractors.

As for the next step, we take works that aim to balance positive and negative samples through
loss and training designs into account. We first consider three widely used losses: Triplet loss [40],
Center loss [50], and Focal loss [30]. These loss designs enforce the embedded distances among
different categories and can improve the classification performance by 3%∼6%. However, they do
not enrich the feature representation and therefore have limited effectiveness. Next, we consider

1https://pdsimage2.wr.usgs.gov/archive/MSL/.
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three widely used training strategies: MixUp [54], CutMix [53], and Dropout[43]. Their perfor-
mances are below 85%, indicating that data augmentation and model regularization cannot solve
the problem of Martian classification.

Since we introduce unlabeled data into our framework, the comparison also involves four semi-
supervised learning methods. One is pseudo learning [29], which generates pseudo labels on un-
labeled data. However, the performance degrades with pseudo learning, which is possible because
the unlabeled data crawled from PDS is uncurated. Compared with the MSL surface dataset, the
collected unlabeled data can be more long-tailed and unbalanced. Therefore, the pseudo labels on
unlabeled data can mislead the classification model training to some extent. The second one is
S4L [3], which applies self-supervised learning on unlabeled data. Among self-supervised tasks,
the jigsaw pretext task improves the performance a little, while rotation brings down the classifi-
cation accuracy. This could be because most unlabeled data contains Martian soil and rock, which
does not offer much semantic information. In that case, unlabeled data is ambiguous for the jigsaw
and rotation pretext tasks. The third one is SupCon [26]. We test two training policies: unfreezing a
linear classifier with a frozen model base (originally used in [26]) and jointly fine-tuning all layers.
Although SupCon also restricts positive samples to be of the same class, our Supervised Inter-class
Contrastive Learning is quite different from SupCon. First, SupCon simply selects training samples
randomly, while we control a training batch to equally cover all classes, which can efficiently clus-
ter representation for classification. Second, SupCon splits the process of representation learning
and classification. In comparison, our Supervised Inter-class Contrastive Learning is trained along
with classification, which is more convenient to implement and better combines supervision infor-
mation with contrastive learning. Because SupCon randomly selects training samples and splits
the learning of representation and classification, it only achieves a top-1 accuracy of 77.11% for
unfreezing a linear classifier and 83.22% for fine-tuning all layers, which is much lower than our
95.86%. The fourth one is SsCL [55], which is cross entropy and pseudo-label-based contrastive
learning with pseudo label propagation according to similarity. However, the contrastive learning
in SsCL is still unsupervised. Also, the unlabeled data is utilized by pseudo label co-calibration
with similarity alignment, which is in direct proportion to the label number of each class and thus
cannot handle the long-tailed and unbalanced unlabeled Martian data. Due to the unimproved con-
trastive learning scheme and the unsuitable unsupervised learning strategy, the top-1 accuracy of
SsCL is only 90.81%, which is >5% worse than ours.

We also compare our methods with three state-of-the-art techniques for imbalanced data. De-
coupling [25] is based on re-sampling, and Class-balanced loss [12] and LDAM-DRW [5] on re-
weighting. Although these techniques can improve the performance of the ResNet-50 baseline,
the effectiveness is limited compared with our strategies.

Our top-1 accuracy is 95.86%. The comparison experiments show that our training strategies
facilitate the model to learn a better visual representation, which leads to better generalization
and robustness.

6.3 Ablation Studies

Effect of Learning Strategies. The ablation settings of our designs are shown in Table 4. The
accuracy first increases by 2.28% owing to the good feature learned by MoCo V2 [11] pretraining.
The data augmentation we use in contrastive learning is stronger than normal data augmentations
used for classification. If we directly apply our strong augmentation to classification, the perfor-
mance degrades by 4.93%, which is because the supervision of classification is too weak to learn
against strong augmentation.

Then we study the remarkable effect produced by the supervised inter-class contrastive learn-
ing Ls

cls
. The accuracy declines with the original contrastive learning formula, i.e., Equation (1),
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Table 4. Ablation Studies of Our Semi-supervised Classification Framework

Method Top-1 (%)

ResNet-50 (baseline) 79.28 ± 1.76

MoCo V2 pretraining 81.56 ± 1.36
MoCo V2 pretraining + Strong Aug. 76.63 ± 3.06
MoCo V2 pretraining + Equation(1) 75.66 ± 1.13
MoCo V2 pretraining + Ls

cls 93.82 ± 1.57

MoCo V2 pretraining + Lu
cls 78.65 ± 1.53

Ls
cls

+ Lu
cls 87.20 ± 0.93

Final (MoCo V2 pretraining + Ls
cls

+ Lu
cls

) 95.86 ± 1.63

Fig. 8. Accuracy for each category of the baseline and our MSL rover image classifier.

confirming our motivation of introducing inter-class supervision. The accuracy also drops with
unsupervised similarity learning Lu

cls
alone, which is in line with our analysis in Section 4. Also,

removing MoCo V2 pretraining degrades performance even with Ls
cls

and Lu
cls

. The above exper-
iments demonstrate the effectiveness of each component in our semi-supervised learning frame-
work, and all components work together to provide the best performance, 95.86%.

A comparison of the detailed accuracy for each category is shown in Figure 8. Among all 22
categories in the testing set, our model is completely correct in 11 categories. Compared with
the baseline, our model improves the performance by a large margin, especially for the drt front,
chemcam cal target, mahli, and drill classes.

Some examples can be found in Figure 9. In the first row, we can see that our classifier is more ro-
bust to image quality degradations such as over-exposure, color channel error, and low resolution.
There is a severe train-test object appearance gap in the drt side category as stated in Section 3.
With the proposed semi-supervised learning scheme, this gap can be narrowed as shown in the
first column of the second row in Figure 9. The other images in the second row show that our
classifier is more robust to complex devices and terrains.
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Fig. 9. Example classification results compared with the baseline.

Effect of Backbones. To evaluate the generalization of our framework, we test other classifi-
cation backbones besides ResNet-50 [22]: VGG-16 [42], MobileNet V2 [39], RegNetX-1.6GF [37],
ResNet-18 [22], ResNet-34 [22], ResNet-101 [22], and ResNet-152 [22] in Table 5. The baselines are
first pretrained on ImageNet, then fine-tuned on the MSL dataset. In the implementation of these
frameworks, we do not use the MoCo V2 [11] strategy to pretrain for convenience.

Our framework can improve the classification performance of all backbones, demonstrating the
effectiveness of semi-supervised learning. It also works for lightweight models MobileNet V2 and
RegNetX-1.6GF, which may be helpful for designing rover-edge deep models. The accuracy of
ResNet-50 is better than VGG-16, ResNet-18, and ResNet-34, which is in line with ResNet-50 being
more powerful than them on ImageNet. The performance is comparable with ResNet-101 and
ResNet-152, which might mean that ResNet-50 is powerful enough for the Martian classification.
Two lightweight models perform worse than ResNet-50, indicating that lightweight models are
less robust when transferring from ImageNet to Mars data.
Parameter Selection. The effect of hyper-parameters λs

cls
and λu

cls
are shown in Tables 6 and 7.

Too small values reduce the effect of contrastive learning, and too big values break the balance
between different loss terms. Finally, λs

cls
= 1 and λu

cls
= 0.2 achieves the best performance.

6.4 Failure Case Study

Although our framework has greatly improved the classification performance, it may still make
incorrect predictions. The inlet class suffers from a severe train-test gap. In the training set,
the inlet images are mostly close-up. However, in the testing set, the inlets are only parts of
the whole image. Accordingly, the accuracy of the inlet class is particularly low as shown in
Figure 8.

More failure cases are shown in Figure 10. In the first row, although our classifier is robust to
image quality degradation to some extent, it cannot cope with extremely low image quality. On
the left of the second row in Figure 10, we can see that some images contain so many objects that
even humans would have trouble classifying them. Our classifier may also fail when other objects
occupy most areas of the image. As shown on the right of the second row in Figure 10, the ground
occupies more areas than the target objects, and thus our classifier tends to recognize the images
as ground.
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Table 5. The Effect of Different Classification Backbones with Our

Semi-supervised Learning

ResNet-50 VGG-16 MobileNet V2 RegNetX-1.6GF

Baseline 79.28 ± 1.76 61.99 ± 2.86 80.00 ± 1.84 77.16 ± 6.65
Ours 87.20 ± 0.93 65.49 ± 1.68 85.70 ± 2.22 82.94 ± 1.50

ResNet-18 ResNet-34 ResNet-101 ResNet-152

Baseline 72.69 ± 1.74 78.70 ± 2.06 81.02 ± 2.43 81.43 ± 2.29
Ours 75.43 ± 1.01 80.61 ± 0.90 87.36 ± 0.94 86.97 ± 0.67

The performance is measured by top-1 (%) accuracy on the MSL dataset. All models are

based on ImageNet pretraining.

Table 6. Effect of Different λs
cls

with λu
cls

= 0

λs
cls

0.3 0.5 1.0 2.0 5.0

Top-1 (%) 88.40 ± 0.69 92.69 ± 0.67 93.82 ± 1.57 93.49 ± 0.27 93.44 ± 0.04

Table 7. Effect of Different λu
cls

with λs
cls

= 1

λu
cls

0 0.1 0.2 0.5 1.0

Top-1 (%) 93.82 ± 1.57 95.43 ± 0.69 95.86 ± 1.63 95.33 ± 1.01 94.74 ± 2.10

Fig. 10. Failure cases on MSL rover image classification.

7 EXPERIMENTS FOR MARS IMAGERY SEGMENTATION

In this section, we evaluate our method under semi-supervised segmentation learning settings on
the AI4Mars dataset [45]. We show experimental settings, comparative results, ablation studies,
and visual analysis.

7.1 Experiment Setup

We train the model with an SGD optimizer and a learning rate of 0.01. The polynomial annealing
policy is applied for scheduling the learning rate. The batch size is set to 16. We first pretrain the
encoder for 60 epochs with Element-wise Inter-class Contrastive Learning, then jointly train with
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Table 8. Segmentation Performance on the AI4Mars Dataset

Method ACC (%) mIoU (%)

Mean Teacher [46] 72.24 55.34
ClassMix [34] 70.67 53.84
CutOut [15] 75.31 58.01
CutMix [53] 74.81 57.70

CCT [35] 77.08 48.19
LESS Within-image [56] 83.65 51.24
LESS Cross-image [56] 85.37 53.60

ReCo [31] 72.67 55.34
ReCo [31] + ClassMix [34] 68.01 51.25
ReCo [31] + CutOut [15] 75.61 58.19
ReCo [31] + CutMix [53] 73.63 56.76

ReCo† [31] 83.29 69.15

ReCo† [31] + ClassMix [34] 83.14 68.77

ReCo† [31] + CutOut [15] 83.23 68.73

ReCo† [31] + CutMix [53] 83.11 68.78

Ours 88.82 70.34
†indicates ImageNet pretraining.

contrastive learning loss and segmentation loss for 60 epochs, and finally with online pseudo labels
for another 60 epochs.

7.2 Comparison Results

We compare our model with state-of-the-art representation learning, augmentation, and con-
trastive learning methods and their combinations. As shown in Table 8, our method achieves the
best results on both segmentation accuracy and mean Intersection over Union (mIoU).

In contrast to Mean Teacher [46], our method does not directly employ pseudo labels to train the
segmentation model. Instead, pseudo labels are added to the memory bank for contrastive learning
and assist segmentation by extracting representation through parameter sharing. This mechanism
can mitigate the negative impact of inaccurate pseudo labels on segmentation performance.

The disadvantage of the data augmentation methods CutMix [53], CutOut [15], and Class-
Mix [34] is that the images of Mars are relatively simple, so the mixed data is not far from other
data in the training set. As a consequence, the purpose of expanding data distribution cannot be
achieved. Meanwhile, the gap between the training and the testing sets cannot be overcome by
simply mixing images, but requires the network to learn better feature representations. In con-
trast, our method obtains a better feature space by making full use of the pixels of the training set.
Also, contrastive learning can make the features of different categories more discriminative and
generalized to the testing set.

We also compare semi-supervised segmentation learning methods. CCT [35] applies unlabeled
data to randomly interfere with the feature, and constrains its output features to be consistent.
However, consistency constraints alone cannot make features more inter-class separable. LESS [56]
applies pixels within and between images for contrastive learning. It directly uses pixel features
for building positive and negative samples, which leads to an excessive number of samples and
thus makes training unstable. Moreover, the pseudo labels in LESS are fixed once generated. In
comparison, we refine the pseudo labels with a retrained encoder for every epoch, which makes
the pseudo labels more accurate. ReCo [31] also employs contrastive learning. The consumption of
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Fig. 11. Curves of segmentation accuracy (left) and mIoU (right) under different epochs. The gray arrow

indicates that we change loss functions at the 60th epoch.

massive computation and memory is the key problem of pixel-level contrastive learning. To solve
this problem, ReCo applies a regional contrast scheme and filters sparse queries and keys based on
the confidence of segmentation prediction. We instead utilize the feature centers of each category
as positive and negative samples. Compared with ReCo, our strategy requires fewer computational
resources. Our features are also closer to the clustering center, leading to a better contrastive learn-
ing effect.

We also examine the effect of jointly using ReCo and augmentation. CutOut can slightly improve
ReCo, while ClassMix and CutMix may even hurt the performance of ReCo. ImageNet pretraining
has a significant positive effect. But when pretrained on ImageNet, none of the data augmentation
methods can further improve the performance. Note that our model does not require ImageNet
pretraining but still outperforms methods pretrained on the ImageNet dataset. This is because our
semi-supervised method can extract more separable features, learning a representation even better
than supervised learning on large-scale datasets.

7.3 Ablation Studies

Number of Epochs. Figure 11 shows the tendency of accuracy and mIoU of different epochs.
For the first 60 epochs, as the training goes on, there is a significant performance gain. With con-
trastive learning pretraining, the network quickly achieves segmentation accuracy that exceeds
the baseline algorithm. Also, for the speed of convergence, our network converges at about 60
epochs, while the baseline needs more than 100 epochs.

At the 60th epoch, we add the semi-supervised loss for co-training. The performance suddenly
drops, which is because the network needs to adapt the feature space to the unlabeled data. Then,
as the training progresses, the feature space is gradually refined with the help of the unlabeled
data, which narrows the train-test gap and leads to a higher segmentation accuracy and mIoU
score.

Effect of Modules. Table 9 shows the impact of different modules in our design. Accuracy (ACC)
is the number of correct pixels divided by the total number of pixels. Mean accuracy (MACC) is the
average of the accuracy for each class. The frequency accuracy (FACC) is weighted and summed
by the frequency of occurrence of each class. Jointly training the segmentation model with the
contrastive loss contributes most to the overall performance gain. Contrastive learning pretrain-
ing improves the mIoU by 1%, and online pseudo labeling further promotes the comprehensive
performance.
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Table 9. Ablation Studies of Our Designs

Method ACC (%) MACC (%) FACC (%) mIoU (%)

Baseline 92.61 71.71 86.28 66.23

w/o Joint Semi-Supervised Learning 92.81 72.41 86.71 66.64
w/o Pretraining 93.78 74.75 88.39 69.30
w/o Online Pseudo Labeling 94.00 75.70 88.77 70.31

Final Method 94.02 75.68 88.82 70.34

Table 10. The Effect of Different Threshold Values

Threshold ACC (%) MACC (%) FACC (%) mIoU (%)

0.99 94.05 75.35 88.85 70.14
0.9 94.02 75.68 88.82 70.34

0.7 94.00 75.35 88.77 70.09
0.5 92.89 72.61 86.81 66.92

Table 11. The Effect of Different Loss Weight Settings

λs
seд ACC (%) MACC (%) FACC (%) mIoU (%)

0.1 93.92 75.83 88.65 70.29
0.01 93.39 75.64 88.75 70.26
0.001 94.02 75.68 88.82 70.34

0.0001 94.04 75.46 88.84 70.19

Effect of Threshold. In Online Pseudo Labeling, inaccurate labels will bring noise and interfere
with the segmentation task. Therefore, we employ a threshold to control the pseudo label assign-
ment of unlabeled data. Only predictions with confidence higher than the threshold can be ap-
pended to the memory bank for contrastive learning.

The effect of this threshold is shown in Table 10. We can see that as the threshold decreases, the
accuracy and the mIoU of the segmentation task drop as well. Low threshold leads to inaccurate
pseudo label annotations, which become training noises that interfere with segmentation learning.
But if the threshold is too high, e.g., 0.99, there will be too few pseudo labels, which provides limited
supervision. We finally set the threshold to 0.9.

Effect of Loss Weight. When jointly training the contrastive learning and segmentation task,
the balance between the two loss functions affects the performance, as shown in Table 11. As the
weight of contrastive learning λs

seд decreases, the segmentation accuracy becomes higher. When
the value of λs

seд is too high, the network pays more attention to the features required for con-
trastive learning, while reducing the learning of the segmentation task. But when the value of
λs

seд is too low, contrastive learning will have a limited impact on the training process. Finally, we
find that λs

seд = 0.001 achieves the best comprehensive performance.

7.4 Visualizations and Interpretability

Feature Visualization. We visualize the output of the last layer in the encoder Bseд . As shown in
Figure 12, features extracted by our method are more compact and separable than those extracted
by the baseline algorithm. Benefiting from the assistance of contrastive learning, the distance be-
tween features of different categories increases, and the features of the same category are more
concentrated.
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Fig. 12. Visualization of the extracted features for each pixel on the AI4Mars dataset.

Fig. 13. Subjective segmentation results compared with the baseline.

From Figure 12, we also notice that the feature distance between soil and sand is relatively close,
which is in line with soil and sand having a similar appearance. Meanwhile, big rocks have diverse
appearances. Accordingly, their representations are more scattered and easier to be confused with
other categories.
Subjective Segmentation Results. We show subjective segmentation results for a testing sam-
ple with many unlabeled areas in Figure 13. Compared with the baseline, our method has more
reasonable predictions, such as recognizing the soil at the bottom of the image. In comparison,
the baseline may misclassify rocky ground to be sand. The segmentation boundary is also more
fine-grained in our prediction.

8 CONCLUSION

In this article, we propose a semi-supervised learning framework for Martian machine vision
tasks. For classification, we extend contrastive learning to supervised inter-class and unsupervised
similarity-only versions. For segmentation, we design element-wise contrastive learning and intro-
duce extra supervision by online pseudo labeling. Experimental results demonstrate the superiority
of our designs. In the future, we will extend our framework to more Martian vision tasks, such as
object detection, tracking, and locating.
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